Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract High latitudes, including the Bering Sea, are experiencing unprecedented rates of change. Long-term Bering Sea warming trends have been identified, and marine heatwaves (MHWs), event-scale elevated sea surface temperature (SST) extremes, have also increased in frequency and longevity in recent years. Recent work has shown that variability in air–sea coupling plays a dominant role in driving Bering Sea upper-ocean thermal variability and that surface forcing has driven an increase in the occurrence of positive ocean temperature anomalies since 2010. In this work, we characterize the drivers of the anomalous surface air–sea heat fluxes in the Bering Sea over the period 2010–22 using ERA5 fields. We show that the surface turbulent heat flux dominates the net surface heat flux variability from September to April and is primarily a result of near-surface air temperature and specific humidity anomalies. The airmass anomalies that account for the majority of the turbulent heat flux variability are a function of wind direction, with southerly (northerly) wind advecting anomalously warm (cool), moist (dry) air over the Bering Sea, resulting in positive (negative) surface turbulent flux anomalies. During the remaining months of the year, anomalies in the surface radiative fluxes account for the majority of the net surface heat flux variability and are a result of anomalous cloud coverage, anomalous lower-tropospheric virtual temperature, and sea ice coverage variability. Our results indicate that atmospheric variability drives much of the Bering Sea upper-ocean temperature variability through the mediation of the surface heat fluxes during the analysis period. Significance StatementA long-term ocean warming trend and a recent increase in marine heatwaves in the Bering Sea have been identified. Previous work showed that anomalies in the exchange of heat between the ocean and the atmosphere were the primary driver of Bering Sea temperature variability, but the processes responsible for the heat exchange anomalies were unknown. In this work, we show that the atmosphere is the primary driver of anomalies in the Bering Sea air–sea heat exchange and therefore plays an important role in altering the thermal state of the Bering Sea. Our results highlight the importance of understanding more about how the ocean and the atmosphere interact at high latitudes and how this relationship will be affected by future climate change.more » « less
- 
            Abstract Two decades of high-resolution satellite observations and climate modeling studies have indicated strong ocean–atmosphere coupled feedback mediated by ocean mesoscale processes, including semipermanent and meandrous SST fronts, mesoscale eddies, and filaments. The air–sea exchanges in latent heat, sensible heat, momentum, and carbon dioxide associated with this so-called mesoscale air–sea interaction are robust near the major western boundary currents, Southern Ocean fronts, and equatorial and coastal upwelling zones, but they are also ubiquitous over the global oceans wherever ocean mesoscale processes are active. Current theories, informed by rapidly advancing observational and modeling capabilities, have established the importance of mesoscale and frontal-scale air–sea interaction processes for understanding large-scale ocean circulation, biogeochemistry, and weather and climate variability. However, numerous challenges remain to accurately diagnose, observe, and simulate mesoscale air–sea interaction to quantify its impacts on large-scale processes. This article provides a comprehensive review of key aspects pertinent to mesoscale air–sea interaction, synthesizes current understanding with remaining gaps and uncertainties, and provides recommendations on theoretical, observational, and modeling strategies for future air–sea interaction research. Significance StatementRecent high-resolution satellite observations and climate models have shown a significant impact of coupled ocean–atmosphere interactions mediated by small-scale (mesoscale) ocean processes, including ocean eddies and fronts, on Earth’s climate. Ocean mesoscale-induced spatial temperature and current variability modulate the air–sea exchanges in heat, momentum, and mass (e.g., gases such as water vapor and carbon dioxide), altering coupled boundary layer processes. Studies suggest that skillful simulations and predictions of ocean circulation, biogeochemistry, and weather events and climate variability depend on accurate representation of the eddy-mediated air–sea interaction. However, numerous challenges remain in accurately diagnosing, observing, and simulating mesoscale air–sea interaction to quantify its large-scale impacts. This article synthesizes the latest understanding of mesoscale air–sea interaction, identifies remaining gaps and uncertainties, and provides recommendations on strategies for future ocean–weather–climate research.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
